
LibFewShot
Release 0.0.1-alpha

R&L Group

Jun 04, 2023

GETTING STARTED

1 Introduction 1

2 Contributors 3

3 Installation 5

4 Get the LibFewShot library 7

5 Configure the LibFewShot environment 9

6 Test the installation 11

7 Next 13

8 Getting started 15
8.1 Prepare the dataset (use miniImageNet as an example) . 15
8.2 Modify the config file . 15
8.3 Run . 16
8.4 View the log files . 16

9 Write a .yaml configuration file 17
9.1 Composition of the configuration file in LibFewShot . 17
9.2 The settings of the configuration file in LibFewShot . 18

10 Train/test existing methods in LibFewShot 23
10.1 Configuration files . 23
10.2 Train . 23
10.3 Test . 24

11 Use Dataset 25
11.1 Dataset format . 25
11.2 Configure Dataset . 26

12 Transformations 27

13 Add a new backbone 29

14 Add a new classifier 31
14.1 metric based . 32
14.2 meta learning . 35
14.3 fine-tuning . 38

i

15 Model Zoo 43

16 How to contribute to this repository? 45
16.1 Add a method/feature or fix a bug . 45
16.2 Use pre-commit to check code . 45
16.3 Pull request style . 46

17 Indices and tables 47

ii

CHAPTER

ONE

INTRODUCTION

LibFewShot is a comprehensive library for few-shot learning (FSL), especially for few-shot image classification. It
integrates multiple classic FSL methods into a unified framework, including four fine-tuning based methods, six meta-
learning based methods, and eight metric-learning based methods. This library is friendly for beginners in few-shot
learning with very concise code and clear structure.

LibFewShot: A Comprehensive Library for Few-shot Learning. Wenbin Li, Chuanqi Dong, Pinzhuo Tian, Tiexin Qin,
Xuesong Yang, Ziyi Wang, Jing Huo, Yinghuan Shi, Lei Wang, Yang Gao, Jiebo Luo. In arXiv 2021.

1

https://arxiv.org/abs/2109.04898

LibFewShot, Release 0.0.1-alpha

2 Chapter 1. Introduction

CHAPTER

TWO

CONTRIBUTORS

Special acknowledgment is first given to LegendDong, who built the foundation of this library and completed the most
of algorithms. The following excellent contributors also participated in the development of this library throughout the
process: WenbinLee, yangcedrus, wZuck, WonderSeven, Pinzhuo Tian, onlyyao, and cjy97.

3

https://github.com/LegenDong
https://github.com/WenbinLee
https://github.com/yangcedrus
https://github.com/wZuck
https://github.com/WonderSeven
https://scholar.google.com/citations?user=8QyuxvEAAAAJ&hl=zh-CN
https://github.com/onlyyao
https://github.com/cjy97

LibFewShot, Release 0.0.1-alpha

4 Chapter 2. Contributors

CHAPTER

THREE

INSTALLATION

This section provides a tutorial on building a working environment for LibFewShot from scratch.

5

LibFewShot, Release 0.0.1-alpha

6 Chapter 3. Installation

CHAPTER

FOUR

GET THE LIBFEWSHOT LIBRARY

Use the following command to get LibFewShot:

cd ~
git clone https://github.com/RL-VIG/LibFewShot.git

7

LibFewShot, Release 0.0.1-alpha

8 Chapter 4. Get the LibFewShot library

CHAPTER

FIVE

CONFIGURE THE LIBFEWSHOT ENVIRONMENT

The environment can be configured in any of the following ways:

1. conda(recommend)

cd <path-to-LibFewShot> # cd in `LibFewShot` directory
conda env create -f requirements.yaml

2. pip

cd <path-to-LibFewShot> # cd in `LibFewShot` directory
pip install -r requirements.txt

3. or whatever works for you as long as the following package version conditions are meet:

numpy >= 1.19.5
pandas >= 1.1.5
Pillow >= 8.1.2
PyYAML >= 5.4.1
scikit-learn >= 0.24.1
scipy >= 1.5.4
tensorboard >= 2.4.1
torch >= 1.5.0
torchvision >= 0.6.0
python >= 3.6.0

9

LibFewShot, Release 0.0.1-alpha

10 Chapter 5. Configure the LibFewShot environment

CHAPTER

SIX

TEST THE INSTALLATION

1. set the config as follows in run_trainer.py:

config = Config("./config/test_install.yaml").get_config_dict()

2. modify data_root in config/headers/data.yaml to the path of the dataset to be used.

3. run code

python run_trainer.py

4. If the first output is correct, it means that LibFewShot has been successfully installed.

11

LibFewShot, Release 0.0.1-alpha

12 Chapter 6. Test the installation

CHAPTER

SEVEN

NEXT

For model training and code modification, please see the train/test methods already integrated in LibFewShot and other
sections of the tutorial.

13

LibFewShot, Release 0.0.1-alpha

14 Chapter 7. Next

CHAPTER

EIGHT

GETTING STARTED

This section shows an example of a process of using LibFewShot.

8.1 Prepare the dataset (use miniImageNet as an example)

1. download and extract miniimagent–ravi.

2. check the structure of the dataset

The dataset must be in the following structure:

dataset_folder/
images/

images_1.jpg
...
images_n.jpg

train.csv *
test.csv *
val.csv *

8.2 Modify the config file

Use ProtoNet as an example

1. create a new yaml file getting_started.yaml in config/

2. write the following commands into the created file:

includes:
- headers/data.yaml
- headers/device.yaml
- headers/losses.yaml
- headers/misc.yaml
- headers/model.yaml
- headers/optimizer.yaml
- classifiers/Proto.yaml
- backbones/Conv64F.yaml

More details can be referred to write a config yaml.

15

https://drive.google.com/file/d/1Oq7JKbd8-6QgLXbZ1MW4Wkv39EgDBk5t/view?usp=sharing

LibFewShot, Release 0.0.1-alpha

8.3 Run

1. set the config as follows in run_trainer.py:

config = Config("./config/getting_started.yaml").get_config_dict()

2. train with the console command:

python run_trainer.py

3. wait for the end of training.

8.4 View the log files

After running the program, you can find a symlink of results/ProtoNet-miniImageNet-Conv64F-5-1 and a
directory of results/ProtoNet-miniImageNet-Conv64F-5-1-$TS, where TSmeans the timestamp. The directory
contains two folders: checkpoint/ and log_files/, and a configuration file: config.yaml. Note that the symlink
will always link to the directory created at the last time, when you train the model with the same few-shot learning
configuration for multiple times.

config.yaml contains all the settings used in the training phase.

log_files/ contains tensorboard files, training log files and test log files.

checkpoints/ contains model checkpoints saved at $save_insterval intervals, the last model checkpoint (used to
resume) and the best model checkpoint (used to test). The checkpoint files are generally divided into emb_func.pth,
classifier.pth, and model.pth (a combination of the first two), respectively.

16 Chapter 8. Getting started

CHAPTER

NINE

WRITE A .YAML CONFIGURATION FILE

Code for this section:

core/config/config.py
config/*

9.1 Composition of the configuration file in LibFewShot

The configuration file of LibFewShot uses a yaml format file and it also supports reading the global configuration
changes from the command line. We have pre-defined a default configuration core/config/default.yaml. The
users can put the custom configuration into the config/ directory, and save this file in the yaml format. At parsing,
the sequencing relationship of defining the configuration of the method is default.yaml->config/->console. The
latter definition overrides the same value in the former definition.

Although most of the basic configurations have been set in the default.yaml, you can not directly run a program just
using the default.yaml. Before running the code, the users are required to define a configuration file of one method
that has been implemented in LibFewShot in the config/ directory.

Considering that FSL menthods usually have some basic parameters, such as way, shot or device id, which are
often needed to be changed, LibFewShot also supports making changes to some simple configurations on the command
line without modifying the yaml file. Similarly, during training and test, because many parameters are the same of
different methods, we wrap these same parameters together and put them into theconfig/headers for brevity. In this
way, we can write the yaml files of the custom methods succinctly by importing them.

The following is the composition of the files in the config/headers directory.

• data.yaml: The relevant configuration of the data is defined in this file.

• device.yaml: The relevant configuration of GPU is defined in this file.

• losses.yaml: The relevant configuration of the loss used for training is defined in this file.

• misc.yaml: The miscellaneous configuration is defined in this file.

• model.yaml: The relevant configuration of the model is defined in this file.

• optimizer.yaml: The relevant configuration of the optimizer used for training is defined in this file.

17

LibFewShot, Release 0.0.1-alpha

9.2 The settings of the configuration file in LibFewShot

The following details each part of the configuration file and explain how to write them. An example of how the DN4
method is configured is also presented.

9.2.1 The settings for data

• data_root: The storage path of the dataset.

• image_size: The size of the input image.

• use_momery: Whether to use memory to accelerate reading.

• augment: Whether to use data augmentation.

• augment_timessupport_set: The number of data augmentation/transformations used. Expanding the
support set data for multiple times.

• augment_times_queryquery_set: The number of data augmentation/transformations used. Expanding the
query set data for multiple times.

data_root: /data/miniImageNet--ravi
image_size: 84
use_memory: False
augment: True
augment_times: 1
augment_times_query: 1

9.2.2 The settings for model

• backbone: The backbone information used in the method.

– name: The name of the backbone, needs to match the case of the backbone implemented in LibFewShot.

– kwargs: The parameters used in the backbone, must keep the name consistent with the name in the code.

∗ is_flatten: The default is False, and if True, the feature vector after flatten is returned.

∗ avg_pool: The default is False, and if True, the feature vector after global average pooling is
returned.

∗ is_feature: The default is False, and if True, the output of each block in backbone is returned.

backbone:
name: Conv64FLeakyReLU
kwargs:

is_flatten: False

• classifier: The classifier information used in the method.

– name: The name of the classifier, needs to match the case of the classifier implemented in LibFew-
Shot.

– kwargs: The parameters used in the classifier initialization, must keep the name consistent with the
name in the code.

18 Chapter 9. Write a .yaml configuration file

LibFewShot, Release 0.0.1-alpha

classifier:
name: DN4
kwargs:

n_k: 3

9.2.3 The settings for training

• epoch: The number of epoch during training.

• test_epoch: The number of epoch during testing.

• pretrain_path: The path of the pre-training weights. At the beginning of the training, this setting will be first
checked. If it is not empty, the pre-trained weights of the target path will be loaded into the backbone of the
current training.

• resume: If set to True, the training status is read from the default address to support continual training.

• way_num: The number of way during training.

• shot_num: The number of shot during training.

• query_num: The number of query during training.

• test_way: The number of way during testing. If not specified, the way_num is assigned to the test_way.

• test_shot: The number of shot during testing. If not specified, the shot_num is assigned to the test_way.

• test_query: The number of query during testing. If not specified, the query_num is assigned to the test_way

• episode_size: The number of tasks/episodes used for the network training at each time.

• batch_size: The batch size used when the pre-training model is pre-trained. In some kinds of meth-
ods, this property is useless.

• train_episode: The number of tasks per epoch during training.

• test_episode: The number of tasks per epoch during testing.

epoch: 50
test_epoch: 5

pretrain_path: ~
resume: False

way_num: 5
shot_num: 5
query_num: 15
test_way: ~
test_shot: ~
test_query: ~
episode_size: 1
batch_size only works in pre-train
batch_size: 128
train_episode: 10000
test_episode: 1000

9.2. The settings of the configuration file in LibFewShot 19

LibFewShot, Release 0.0.1-alpha

9.2.4 The settings for optimizer

• optimizer: Optimizer information used during training.

• name: The name of the Optimizer, only temporarily supports all Optimizers provided by PyTorch.

• kwargs: The parameters used in the optimizer, and the name needs to be the same as the parameter name required
by the pytorch optimizer.

• other: Currently, the framework only supports the learning rate used by each part of a separately specified
method, and the name needs to be the same as the variable name used in the method.

optimizer:
name: Adam
kwargs:

lr: 0.01
other:

emb_func: 0.01
#For demonstration purposes, there are no additional training parameters for dn4.
dnf_layer: 0.001

lr_scheduler: The learning rate adjustment strategy used during training, only temporarily supports all the learning
rate adjustment strategies provided by PyTorch.

• name: The name of the learning rate adjustment strategy.

• kwargs: Other parameters used in the learning rate adjustment strategy in PyTorch.

lr_scheduler:
name: StepLR
kwargs:
gamma: 0.5
step_size: 10

9.2.5 The settings for Hardware

device_ids: The gpu number, which is the same as the nvidia-smi command.

n_gpu: The number of parallel gpu used during training, if 1, it can’t apply to parallel training.

deterministic: Whether to turn on torch.backend.cudnn.benchmark and torch.backend.cudnn.
deterministic and whether to determine random seeds during training.

seed: Seed points used in numpytorchand cuda.

device_ids: 0,1,2,3,4,5,6,7
n_gpu: 4
seed: 0
deterministic: False

20 Chapter 9. Write a .yaml configuration file

LibFewShot, Release 0.0.1-alpha

9.2.6 The settings for Miscellaneous

log_name: If empty, use the auto-generated classifier.name-data_root-backbone-way_num-shot_num file
directory.

log_level: The log output level during training.

log_interval: The number of tasks for the log output interval.

result_root: The root of the result.

save_interval: The epoch interval to save weights.

save_part: The name of the variable in the method that needs to be saved. Variables with these names are saved
separately when the model is saved. The parts that need to be saved are given as a list under save_part.

log_name: ~
log_level: info
log_interval: 100
result_root: ./results
save_interval: 10
save_part:

- emb_func
- dn4_layer

9.2. The settings of the configuration file in LibFewShot 21

LibFewShot, Release 0.0.1-alpha

22 Chapter 9. Write a .yaml configuration file

CHAPTER

TEN

TRAIN/TEST EXISTING METHODS IN LIBFEWSHOT

Code for this section

config/dn4.yaml
run_trainer.py
run_test.py

In this section, we take the DN4 method as an example to describe how to train and test an implemented method.

10.1 Configuration files

In t0-write_a_config_yaml.md, we have showed how to write a configuration file. We also assemble some of the
common configuration into the public file, so that you can easily finish your DN4 configuration file.

includes:
- headers/data.yaml
- headers/device.yaml
- headers/misc.yaml
- headers/optimizer.yaml
- backbones/resnet12.yaml
- classifiers/DN4.yaml

For specific customer requirements, you can modify the related included files or use other files and add your own
configuration.

10.2 Train

Name the configuration file we have finished in previous section as dn4.yaml, place it into the config/ directory.

Modify the run_trainer.py file in project root as follow:

config = Config("./config/dn4.yaml").get_config_dict()

Next, run this instruction in your shell

python run_trainer.py

and the training will start.

23

LibFewShot, Release 0.0.1-alpha

10.3 Test

Modify the run_test.py file in project root as follow:

import os
from core.config import Config
from core.test import Test

PATH = "./results/DN4-miniImageNet-resnet12-5-5"
VAR_DICT = {

"test_epoch": 5,
"device_ids": "4",
"n_gpu": 1,
"test_episode": 600,
"episode_size": 1,

}

def main(rank, config):
test = Test(rank, config, PATH)
test.test_loop()

if __name__ == "__main__":
config = Config(os.path.join(PATH, "config.yaml"), VAR_DICT).get_config_dict()

if config["n_gpu"] > 1:
os.environ["CUDA_VISIBLE_DEVICES"] = config["device_ids"]
torch.multiprocessing.spawn(main, nprocs=config["n_gpu"], args=(config,))

else:
main(0, config)

Input in your shell:

python run_test.py

and the testing will start.

Of course, all of the VAR_DICT variables inrun_test.py can be removed, by running instruction as follows

python run_test.py --test_epoch 5 --device_ids 4 --n_gpu 1 --test_episode 600 --episode_
→˓size 1

to achieve the same effect.

24 Chapter 10. Train/test existing methods in LibFewShot

CHAPTER

ELEVEN

USE DATASET

In LibFewShot, datasets have a fixed format. We read the data according to the datasets in most few-shot learning
settings, like miniImageNet and tieredImageNet. Some datasets like Caltech-UCSD Birds 200 can be downloaded
from the internet and unzipped for using directly.

If you want to use a new dataset but its data format is different from the above datasets, you need to transform it into
the same dataset format.

11.1 Dataset format

Like miniImageNet, dataset format should be the same as follows:

dataset_folder/
images/

images_1.jpg
...
images_n.jpg

train.csv *
test.csv *
val.csv *

All training, evaluating and testing images should be placed in the images directory, by using train.csvtest.csv
and val.csv files to split the dataset, respectively. These three files have similar format, and are organized as follows:

filename , label
images_m.jpg, class_name_i
...
images_n.jpg, class_name_j

The CSV head contains only two columns, one of which is filename and the other is label. The filename should
be a relative path from the images directory. It means that, for an image with absolute path .../dataset_folder/
images/images_1.jpgits filename should be images_1.jpg. In a similar way, for an image with absolute path ...
/dataset_folder/images/class_name_1/images_1.jpg, its filename should be class_name_1/images_1.
jpg.

25

https://paperswithcode.com/dataset/miniimagenet-1
https://paperswithcode.com/dataset/tieredimagenet
http://www.vision.caltech.edu/visipedia/CUB-200.html

LibFewShot, Release 0.0.1-alpha

11.2 Configure Dataset

After downloading a dataset and transforming it into the above dataset format, you only need to change the data_root
in the configuration file. Notice that LibeFewShot will print the data directory’s name as well as the dataset’s name
into the log.

26 Chapter 11. Use Dataset

CHAPTER

TWELVE

TRANSFORMATIONS

Code for this section

core/data/dataloader.py
core/data/collates/contrib/__init__.py
core/data/collates/collate_functions.py

In LibFewShotwe use a base transforms to compare some methods fairly. The base transforms could be divided
into three sub-transforms:

Resize&Crop + ExtraTransforms + ToTensor&Norm

There are some differences in Resize&Crop for different dataset and config file (key augment):

1. in the training phase, config.augment is True

from torchvision import transforms
transforms.RandomResizedCrop((config.image_size, config.image_size))

2. in other phases

from torchvision import transforms
transforms.Resize((96, 96)) # or 256 when config.image_size = 224
transforms.CenterCrop((84, 84)) # or 224 when config.image_size = 224

Besides, you may notice that ToTensor & Norm always uses the same sets of mean and variance, then you can reset
mean and variance for different datasets.

MEAN = [120.39586422 / 255.0, 115.59361427 / 255.0, 104.54012653 / 255.0]
STD = [70.68188272 / 255.0, 68.27635443 / 255.0, 72.54505529 / 255.0]

27

LibFewShot, Release 0.0.1-alpha

28 Chapter 12. Transformations

CHAPTER

THIRTEEN

ADD A NEW BACKBONE

Code for this section

core/model/backbone/*
config/backbones/*

If you want to add a new backbone into LibFewShot, you should put all files about this new backbone in the directory
of core/model/backbone/. For example, to add a ResNet to LibFewShot, you need provide a resnet.py in the
directory of core/model/backbone/, and provide a class or function that can return a ResNet model like following:

...

class ResNet(nn.Module):
def __init(self,...):

...

def ResNet18():
model = ResNet(BasicBlock, [2,2,2,2], **kwargs)
return model

After that, to make sure trainer.py could call ResNet18, you need add a line in core/model/backbone/
__init__.py as follows:

...

from resnet import ResNet18

At this point, the addition of a new backbone is finished.

The new backbone shares the same way to use as other backbones. For example, to change DN4 backbone to the new
backbone, you just modify backbone’s value in config/dn4.yaml as follows:

arch info
backbone:
name: resnet18
kwargs:
avg_pool: False
is_flatten: False

29

LibFewShot, Release 0.0.1-alpha

30 Chapter 13. Add a new backbone

CHAPTER

FOURTEEN

ADD A NEW CLASSIFIER

Code for this section

core/model/abstract_model.py
core/model/meta/*
core/model/metric/*
core/model/pretrain/*

We need to select one representative method from matric based methods, meta learning methods and
fine-tuning methods, respectively, and describe how to add new methods of the three categories.

Before thiswe need to introduce a parent class of all methods: abstract_model.

class AbstractModel(nn.Module):
def __init__(self,...)

base info

@abstractmethod
def set_forward(self,):

inference phase
pass

@abstractmethod
def set_forward_loss(self,):

training phase
pass

def forward(self, x):
out = self.emb_func(x)
return out

def train(self,):
override super's function

def eval(self,):
override super's function

def _init_network(self,):
init all layers

def _generate_local_targets(self,):
formate the few shot labels

(continues on next page)

31

LibFewShot, Release 0.0.1-alpha

(continued from previous page)

def split_by_episode(self,):
split batch by way, shot and query

def reset_base_info(self,):
change way, shot and query

• __init__init funcused to initialize the few shot learning settings like way, shot, query and other train parameters.

• set_forwardused to be called in inference phase, return classifier’s output and accuracy.

• set_forward_lossused to be called in training phase, return classifier’s output, accuracy and loss.

• forwardoverride the forward function forward of Module in pytorch, return the ouput of backbone.

• trainoverride the forward function train of Module in pytorch, used to unfix the BatchNorm layer parameter.

• evaloverride the forward function test of Module in pytorch, used to fix the BatchNorm layer parameter.

• _init_networkused to initialize all network parameters.

• _generate_local_targetsused to generate target for few shot learning.

• split_by_episodeused to split batch in shape:[episode_size, way, shot+query, . . .]. It has several split modes.

• reset_base_infoused to change the few shot learning settings.

New methods must override the set_forward and set_forward_loss functions, and all other functions can be called
according to the needs of the implemented methods.

Note that in order for the newly added method to be called through reflection, add a line to the __init__.py file in
the directory of the corresponding method type:

from NewMethodFileName import *

14.1 metric based

Using DN4 as an example, we will describe how to add a new metric based classifier to LibFewShot.

metric based methods have a common parent class MetricModel, which is inherited from AbstractModel.

class MetricModel(AbstractModel):
def __init__(self,):

super(MetricModel, self).__init__()

@abstractmethod
def set_forward(self, *args, **kwargs):

pass

@abstractmethod
def set_forward_loss(self, *args, **kwargs):

pass

def forward(self, x):
out = self.emb_func(x)
return out

32 Chapter 14. Add a new classifier

LibFewShot, Release 0.0.1-alpha

Since the pipeline of metric based methods are mostly simple, MetricModel just inherites AbstractModel and
no other changes are made.

14.1.1 build model

First, create DN4 model class, add file dn4.py under core/model/metric/: (this code have some differences with
source code)

class DN4(MetricModel):
def __init__(self, n_k=3, **kwargs):

base info
super(DN4Layer, self).__init__(**kwargs)
self.n_k = n_k
self.loss_func = nn.CrossEntropyLoss()

def set_forward(self, batch):
inference phase
"""
:param batch: (images, labels)
:param batch.images: shape: [episodeSize*way*(shot*augment_times+query*augment_

→˓times_query),C,H,W]
:param batch.labels: shape: [episodeSize*way*(shot*augment_times+query*augment_

→˓times_query),]
:return: net output and accuracy
"""
image, global_target = batch
image = image.to(self.device)
episode_size = image.size(0) // (

self.way_num * (self.shot_num + self.query_num)
)
feat = self.emb_func(image)
support_feat, query_feat, support_target, query_target = self.split_by_episode(

feat, mode=2
)

t, wq, c, h, w = query_feat.size()
_, ws, _, _, _ = support_feat.size()

t, wq, c, hw -> t, wq, hw, c -> t, wq, 1, hw, c
query_feat = query_feat.view(

t, self.way_num * self.query_num, c, h * w
).permute(0, 1, 3, 2)
query_feat = F.normalize(query_feat, p=2, dim=2).unsqueeze(2)

t, ws, c, h, w -> t, w, s, c, hw -> t, 1, w, c, shw
support_feat = (

support_feat.view(t, self.way_num, self.shot_num, c, h * w)
.permute(0, 1, 3, 2, 4)
.contiguous()
.view(t, self.way_num, c, self.shot_num * h * w)

)
support_feat = F.normalize(support_feat, p=2, dim=2).unsqueeze(1)

(continues on next page)

14.1. metric based 33

LibFewShot, Release 0.0.1-alpha

(continued from previous page)

t, wq, w, hw, shw -> t, wq, w, hw, n_k -> t, wq, w
relation = torch.matmul(query_feat, support_feat)
topk_value, _ = torch.topk(relation, self.n_k, dim=-1)
score = torch.sum(topk_value, dim=[3, 4])

output = score.view(episode_size * self.way_num * self.query_num, self.way_num)
acc = accuracy(output, query_target)

return output, acc

def set_forward_loss(self, batch):
training phase
"""
:param batch: (images, labels)
:param batch.images: shape: [episodeSize*way*(shot*augment_times+query*augment_

→˓times_query),C,H,W]
:param batch.labels: shape: [episodeSize*way*(shot*augment_times+query*augment_

→˓times_query),]
:return: net output, accuracy and train loss
"""
image, global_target = batch
image = image.to(self.device)
episode_size = image.size(0) // (

self.way_num * (self.shot_num + self.query_num)
)
emb = self.emb_func(image)
support_feat, query_feat, support_target, query_target = self.split_by_episode(

emb, mode=2
)

t, wq, c, h, w = query_feat.size()
_, ws, _, _, _ = support_feat.size()

t, wq, c, hw -> t, wq, hw, c -> t, wq, 1, hw, c
query_feat = query_feat.view(

t, self.way_num * self.query_num, c, h * w
).permute(0, 1, 3, 2)
query_feat = F.normalize(query_feat, p=2, dim=2).unsqueeze(2)

t, ws, c, h, w -> t, w, s, c, hw -> t, 1, w, c, shw
support_feat = (

support_feat.view(t, self.way_num, self.shot_num, c, h * w)
.permute(0, 1, 3, 2, 4)
.contiguous()
.view(t, self.way_num, c, self.shot_num * h * w)

)
support_feat = F.normalize(support_feat, p=2, dim=2).unsqueeze(1)

t, wq, w, hw, shw -> t, wq, w, hw, n_k -> t, wq, w
relation = torch.matmul(query_feat, support_feat)
topk_value, _ = torch.topk(relation, self.n_k, dim=-1)
score = torch.sum(topk_value, dim=[3, 4])

(continues on next page)

34 Chapter 14. Add a new classifier

LibFewShot, Release 0.0.1-alpha

(continued from previous page)

output = score.view(episode_size * self.way_num * self.query_num, self.way_num)
loss = self.loss_func(output, query_target)
acc = accuracy(output, query_target)

return output, acc, loss

__init__ function call super.__init__() to initialize few shot learning settings, and initialize DN4 method’s super
parameter n_k.

Please notice line 19-27,65-73, these lines aim to split batch feature vectors into correct shape that fit few shot learning
setting. In deatils, in order to maximize the useage of computing resources, we first get all images’ feature vectors, and
then divide the feature vectors into support set, suery set. 29-50 lines are used to calculate DN4 method’s output.
Finally, the ouput shape of set_forward is $output.shape:[episode_sizewayquery,way]acc:float$, the output shape of
set_forward_loss is $output.shape:[episode_sizewayquery,way], acc:float, loss:tensor$. Where output needs to be
cabculated according to the method, acc can call the accuracy function provided by LibFewShot and input output,
target to get the classification accuracy.While loss can use the loss function that the user initializes at the start of
the method, used in set_forward_loss to get the classification loss.

The metric based method simply needs to process the input images into the corresponding form according to the method,
and then begin the training.

14.2 meta learning

Using MAML as an example, we will describe how to add a new meta learning classifier to LibFewShot.

meta learning methods have a common parent class MetaModel, which is inherited from AbstractModel.

class MetaModel(AbstractModel):
def __init__(self,):

super(MetaModel, self).__init__(init_type, ModelType.META, **kwargs)

@abstractmethod
def set_forward(self, *args, **kwargs):

pass

@abstractmethod
def set_forward_loss(self, *args, **kwargs):

pass

def forward(self, x):
out = self.emb_func(x)
return out

@abstractmethod
def set_forward_adaptation(self, *args, **kwargs):

pass

def sub_optimizer(self, parameters, config):
kwargs = dict()

if config["kwargs"] is not None:
(continues on next page)

14.2. meta learning 35

LibFewShot, Release 0.0.1-alpha

(continued from previous page)

kwargs.update(config["kwargs"])
return getattr(torch.optim, config["name"])(parameters, **kwargs)

The meta-learning method adds two new functions, set_forward_adaptation and sub_optimizer.
set_forward_adaptation is the logic that deals with the need to fine-tune the network during the classifica-
tion process, and sub_optimizer is to provide a new sub-optimizer for the fine-tuning.

14.2.1 build model

First, create MAML model class, add file maml.py under core/model/meta/: (this code have some differences with
source code)

from ..backbone.utils import convert_maml_module

class MAML(MetaModel):
def __init__(self, inner_param, feat_dim, **kwargs):

super(MAML, self).__init__(**kwargs)
self.loss_func = nn.CrossEntropyLoss()
self.classifier = nn.Sequential(nn.Linear(feat_dim, self.way_num))
self.inner_param = inner_param

convert_maml_module(self)

def forward_output(self, x):
"""
:param x: feature vectors, shape: [batch, C]
:return: probability of classification
"""
out1 = self.emb_func(x)
out2 = self.classifier(out1)
return out2

def set_forward(self, batch):
"""
:param batch: (images, labels)
:param batch.images: shape: [episodeSize*way*(shot*augment_times+query*augment_

→˓times_query),C,H,W]
:param batch.labels: shape: [episodeSize*way*(shot*augment_times+query*augment_

→˓times_query),]
:return: net output, accuracy and train loss
"""
image, global_target = batch # unused global_target
image = image.to(self.device)
support_image, query_image, support_target, query_target = self.split_by_episode(

image, mode=2
)
episode_size, _, c, h, w = support_image.size()

output_list = []
for i in range(episode_size):

episode_support_image = support_image[i].contiguous().reshape(-1, c, h, w)
(continues on next page)

36 Chapter 14. Add a new classifier

LibFewShot, Release 0.0.1-alpha

(continued from previous page)

episode_query_image = query_image[i].contiguous().reshape(-1, c, h, w)
episode_support_target = support_target[i].reshape(-1)
self.set_forward_adaptation(episode_support_image, episode_support_target)

output = self.forward_output(episode_query_image)

output_list.append(output)

output = torch.cat(output_list, dim=0)
acc = accuracy(output, query_target.contiguous().view(-1))
return output, acc

def set_forward_loss(self, batch):
"""
:param batch: (images, labels)
:param batch.images: shape: [episodeSize*way*(shot*augment_times+query*augment_

→˓times_query),C,H,W]
:param batch.labels: shape: [episodeSize*way*(shot*augment_times+query*augment_

→˓times_query),]
:return: net output, accuracy and train loss
"""
image, global_target = batch # unused global_target
image = image.to(self.device)
support_image, query_image, support_target, query_target = self.split_by_episode(

image, mode=2
)
episode_size, _, c, h, w = support_image.size()

output_list = []
for i in range(episode_size):

episode_support_image = support_image[i].contiguous().reshape(-1, c, h, w)
episode_query_image = query_image[i].contiguous().reshape(-1, c, h, w)
episode_support_target = support_target[i].reshape(-1)
self.set_forward_adaptation(episode_support_image, episode_support_target)

output = self.forward_output(episode_query_image)

output_list.append(output)

output = torch.cat(output_list, dim=0)
loss = self.loss_func(output, query_target.contiguous().view(-1))
acc = accuracy(output, query_target.contiguous().view(-1))
return output, acc, loss

def set_forward_adaptation(self, support_set, support_target):
lr = self.inner_param["lr"]
fast_parameters = list(self.parameters())
for parameter in self.parameters():

parameter.fast = None

self.emb_func.train()
self.classifier.train()

(continues on next page)

14.2. meta learning 37

LibFewShot, Release 0.0.1-alpha

(continued from previous page)

for i in range(self.inner_param["iter"]):
output = self.forward_output(support_set)
loss = self.loss_func(output, support_target)
grad = torch.autograd.grad(loss, fast_parameters, create_graph=True)
fast_parameters = []

for k, weight in enumerate(self.parameters()):
if weight.fast is None:

weight.fast = weight - lr * grad[k]
else:

weight.fast = weight.fast - lr * grad[k]
fast_parameters.append(weight.fast)

The most important parts of MAML are the two parts. The first part is the convert_maml_module function on line 10,
which changes all the layers in the network to MAML format layers for easy parameter updating. The other part is the
set_forward_adaptation function, which updates the fast parameters of the network. MAML is a common meta
learning method, so we will use MAML as an example to show how to add meta learning method to LibFewShot.

14.3 fine-tuning

Using Baseline as an example, we will describe how to add a new fine-tuning classifier to LibFewShot.

fine-tuning methods have a common parent class FinetuningModel, which is inherited from AbstractModel.

class FinetuningModel(AbstractModel):
def __init__(self,):

super(FinetuningModel, self).__init__()
...

@abstractmethod
def set_forward(self, *args, **kwargs):

pass

@abstractmethod
def set_forward_loss(self, *args, **kwargs):

pass

def forward(self, x):
out = self.emb_func(x)
return out

@abstractmethod
def set_forward_adaptation(self, *args, **kwargs):

pass

def sub_optimizer(self, model, config):
kwargs = dict()
if config["kwargs"] is not None:

kwargs.update(config["kwargs"])
return getattr(torch.optim, config["name"])(model.parameters(), **kwargs)

The main aim of finetuning method train phase is to train a good feature extractor, while using the few shot learning

38 Chapter 14. Add a new classifier

LibFewShot, Release 0.0.1-alpha

setting in the test phase to finetune the model by the support set. Another method is to use the training setting of
few shot learning to fine-tune the whole model after the feature extractor is trained. In line with the meta learning
method, a set_forward_adaptation abstract function is added to handle the forward process during test phase. In
addition, since there are some fine-tuning methods in which the classifier needs to be trained, a sub_optimizer
method is added, passing in the parameters to be optimized and the optimized configuration parameters, and returning
the optimizer for easy call.

14.3.1 build model

First, create Baseline model class, add file baseline.py under core/model/finetuning/: (this code have some
differences with source code)

class Baseline(FinetuningModel):
def __init__(self, feat_dim, num_class, inner_param, **kwargs):

super(Baseline, self).__init__(**kwargs)
self.feat_dim = feat_dim
self.num_class = num_class
self.inner_param = inner_param

self.classifier = nn.Linear(self.feat_dim, self.num_class)
self.loss_func = nn.CrossEntropyLoss()

def set_forward(self, batch):
"""
:param batch: (images, labels)
:param batch.images: shape: [episodeSize*way*(shot*augment_times+query*augment_

→˓times_query),C,H,W]
:param batch.labels: shape: [episodeSize*way*(shot*augment_times+query*augment_

→˓times_query),]
:return: net output, accuracy and train loss
"""
image, global_target = batch
image = image.to(self.device)
feat = self.emb_func(image)

support_feat, query_feat, support_target, query_target = self.split_by_
→˓episode(feat, mode=1)

episode_size = support_feat.size(0)

support_target = support_target.reshape(episode_size, self.way_num, self.shot_
→˓num)

query_target = query_target.reshape(episode_size, self.way_num, self.query_num)

output_list = []
for i in range(episode_size):

output = self.set_forward_adaptation(support_feat, support_target, query_
→˓feat)

output_list.append(output)

output = torch.stack(output_list, dim=0)
acc = accuracy(output, query_target)

return output, acc
(continues on next page)

14.3. fine-tuning 39

LibFewShot, Release 0.0.1-alpha

(continued from previous page)

def set_forward_loss(self, batch):
"""
:param batch: (images, labels)
:param batch.images: shape: [batch_size,C,H,W]
:param batch.labels: shape: [batch_size,]
:return: net output, accuracy and train loss
"""
image, target = batch
image = image.to(self.device)
target = target.to(self.device)

feat = self.emb_func(image)
output = self.classifier(feat)
loss = self.loss_func(output, target)
acc = accuracy(output, target)
return output, acc, loss

def set_forward_adaptation(self, support_feat, support_target, query_feat):
"""
support_feat: shape: [way_num, shot_num, C]
support_target: shape: [way_num*shot_num,]
query_feat: shape: [way_num, shot_num, C]
"""
classifier = nn.Linear(self.feat_dim, self.way_num)
optimizer = self.sub_optimizer(classifier, self.inner_param["inner_optim"])

classifier = classifier.to(self.device)

classifier.train()
support_size = support_feat.size(0)
for epoch in range(self.inner_param["inner_train_iter"]):

rand_id = torch.randperm(support_size)
for i in range(0, support_size, self.inner_param["inner_batch_size"]):

select_id = rand_id[i : min(i + self.inner_param["inner_batch_size"],␣
→˓support_size)]

batch = support_feat[select_id]
target = support_target[select_id]

output = classifier(batch)

loss = self.loss_func(output, target)

optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()

output = classifier(query_feat)
return output

The set_forward_loss is the same as the classical supervised classification method, while the set_forward is the
same as the meta learning method. The contents of the set_forward_adaptation function is the main part of
the test phase. The feature vectors of support set and query set extracted by backbone is used to train a classifier,

40 Chapter 14. Add a new classifier

LibFewShot, Release 0.0.1-alpha

and the feature vectors of query set is used to classify by the classifier.

14.3. fine-tuning 41

LibFewShot, Release 0.0.1-alpha

42 Chapter 14. Add a new classifier

CHAPTER

FIFTEEN

MODEL ZOO

Coming Soon.

This file will contains methods’ precision results, provides checkpoint downloads and configuration file downloads,
and even provides code parsing for each method.

43

LibFewShot, Release 0.0.1-alpha

44 Chapter 15. Model Zoo

CHAPTER

SIXTEEN

HOW TO CONTRIBUTE TO THIS REPOSITORY?

Feel free to contribute classifiers, backbones, functions and any enhancements.

16.1 Add a method/feature or fix a bug

We recommend using the following guidelines:

1. fork the main branch of the latest LibFewShot;

2. checkout a new branchwhose name should reflects the content intuitively, like add-method-ProtoNet of
fix-doc-contribution;

3. add a new method/feature or fix a bug;

4. check and commit;

5. create a pull request.

Note that if you add a new method, you need:

1. test if the method works properly;

2. provide a config file of this new method, and the corresponding 5-way 1-shot and 5-way 5-shot accuracy on the
miniImageNet dataset.

Also, it will be better if you can provide:

1. the 5-way 1-shot and 5-way 5-shot accuracy on other datasets (like tieredImageNet);

2. model_best.pth of each setting on each dataset.

We will thank you for your contributions in README or other prominent places.

16.2 Use pre-commit to check code

Before committing the code, you may need to make sure that your code could pass black and flake test. We use pre-
commit to do test and automatic code revision:

1. first, install pre-commit;

cd <path-to-LibFewShot>
pip install pre-commit

1. run pre-commit install;

2. run pre-commit run --all-files;

45

https://github.com/psf/black
https://github.com/PyCQA/flake8

LibFewShot, Release 0.0.1-alpha

3. modify the code by the warning gived by pre-commit.

16.3 Pull request style

The title of your PR should like followings:

[Method] XXXX XXXX
OR
[Feature] XXXX XXXX
OR
[FIX] XXXX XXXX

The body of your PR should describe the main content of this PR in EN OR CN.

46 Chapter 16. How to contribute to this repository?

CHAPTER

SEVENTEEN

INDICES AND TABLES

• genindex

• modindex

• search

47

	Introduction
	Contributors
	Installation
	Get the LibFewShot library
	Configure the LibFewShot environment
	Test the installation
	Next
	Getting started
	Prepare the dataset (use miniImageNet as an example)
	Modify the config file
	Run
	View the log files

	Write a .yaml configuration file
	Composition of the configuration file in LibFewShot
	The settings of the configuration file in LibFewShot
	The settings for data
	The settings for model
	The settings for training
	The settings for optimizer
	The settings for Hardware
	The settings for Miscellaneous

	Train/test existing methods in LibFewShot
	Configuration files
	Train
	Test

	Use Dataset
	Dataset format
	Configure Dataset

	Transformations
	Add a new backbone
	Add a new classifier
	metric based
	build model

	meta learning
	build model

	fine-tuning
	build model

	Model Zoo
	How to contribute to this repository?
	Add a method/feature or fix a bug
	Use pre-commit to check code
	Pull request style

	Indices and tables

